Aufgabe:
Geografische Positionen auf der Erdkugel (Radius \( R_{E}=6371 \mathrm{~km} \) ) werden üblicherweise in \( \mathrm{Ku}- \) gelkoordinaten angegeben:
\( x=R_{E}(\cos (\lambda) \cos (\phi), \sin (\lambda) \cos (\phi), \sin (\phi))^{T} \)
Dabei bezeichnet \( \lambda \in]-\pi, \pi\left[\right. \) den Längengrad, \( \phi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) den Breitengrad des Ortes \( x . \) So gilt beispielsweise:
\( \text { Moskau: } \lambda=37^{\circ} 35^{\prime}, \phi=55^{\circ} 45^{\prime} \text { , } \)
Washington: \( \lambda=6^{\circ} 9^{\prime}, \phi=46^{\circ} 12^{\prime} \)
\( \text { Genf: } \lambda=-77^{\circ} 1^{\prime}, \phi=38^{\circ} 54^{\prime} \)
(a)Beweisen Sie: Ist α der Winkel zwischen zwei Ortsvektoren auf der Oberfläche einer Kugel, so ist d = |αR| der Abstand zwischen den Ortsvektoren.
(b) Berechnen Sie die Entfernungen von Moskau nach Genf,von Genf nach Washington und von Washington nach Moskau.
Problem/Ansatz:
ich bin neu hier und würde bräuchte mal dringend eure Hilfe für diese Aufgaben. Wie geht man an diese Aufgabe ran, wie beweist man den Abstand zwischen den Ortsvektoren und wie kann man dann damit die Entfernungen berechnen?
Ich freue mich riesig über Hilfe.
LG