Aufgabe: Spielkarten Permutationen bei Full Deck Solitaire (Apple) unter Randbedingungen - Kombinatorik - 2x52 Karten
Problem/Ansatz:
Ich habe verstanden, dass es bei einem Kartendeck mit 52 Karten 52! (also 8 * 10^67) verschiedene Permutationen gibt. Aber ich finde keine Antwort (hier oder im Internet) wieviele Permutationen ein Kartendeck mit 2x52 Karten hat. wenn man berücksichtigt,
A) dass es egal ist ob zB ein Herz-As aus dem Deck 1 oder dem Deck 2 kommt, das sich auf der x-ten Pos des Arrays mit 104 Elementen befindet (gemischten Kartendecks). Also darf ich hier nicht 104! für die Anzahl der möglichen Permutationen ansetzen, sondern was genau ?
B) Für gewisse Spiele (wie das von mir derzeit betrachtete Full Deck Solitaire) ist es auch (fast) egal, ob sich nach dem Mischen irgendein anderes As (Karo, Pik, Kreuz) an der x-ten Position im Kartenstapel befindet, da ich jede dieser Karten bewegen darf und an eine 2er Karte anlegen kann. Also würde mich interessieren, wie sich das auf die Anzahl der Permutationen auswirkt, wenn man weiters alle 4 roten Asse bzw. alle 8 Asse als "gleiche" Karten betrachtet.
Info: Es gibt andere Kartenspiele, mit anderen Spielregeln, wo man die Farben nur abwechselnd und in steigender oder fallender Sortierung anlegen darf. Ich hoffe, dass ich dann mit eurere Hilfe mir die anderen Permutations Möglichkeiten selbst ausrechnen kann.
Irgendwie hängt das vielleicht mit einem Binominalkoeffizienten zusammen, vielleicht ? Aber ich bekomm das nicht auf die Reihe.
Vielen Dank im Voraus
Michael
PS: Hoffentlich erscheint der Fragentitel korrekt ... :-) Ist meine erste Frage hier !