Aloha :)
Wir sollen \(f(x;y)=x+y\) über der Menge \(M\) integrieren, wobei$$A\coloneqq\{(x;y)\in\mathbb R^2\,\big|\,x\ge0\;,\;0\le y\le 2\;,\;y-1\le x \le y+1\}$$Diese Punktmenge können wir in 2 disjunkte Teilmengen aufteilen:$$A_1\coloneqq\{(x;y)\in\mathbb R^2\,\big|\,1\le y\le 2\;,\;y-1\le x \le y+1\}$$$$A_2\coloneqq\{(x;y)\in\mathbb R^2\,\big|\,0\le y<1\;,\;0\le x \le y+1\}$$
Es liegt also nahe, das gesuchte Flächenintegral in zwei Integrale aufzuteilen:
$$I=\int\limits_1^2dy\int\limits_{y-1}^{y+1}dx\,(x+y)+\int\limits_0^1dy\int\limits_0^{y+1}dx\,(x+y)$$$$\phantom{I}=\int\limits_1^2dy\left[\frac{x^2}{2}+yx\right]_{x=y-1}^{y+1}+\int\limits_0^1dy\left[\frac{x^2}{2}+yx\right]_{x=0}^{y+1}$$$$\phantom{I}=\int\limits_1^2dy\,4y+\int\limits_0^1dy\,\frac{1}{2}(3y^2+4y+1)$$$$\phantom{I}=\left[2y^2\right]_1^2+\frac{1}{2}\left[y^3+2y^2+y\right]_0^1=6+2=8$$