Hallo,
zunächst liefert die Substitution das Integral
$$\int_1^{a} [\sin(\frac{1}{x})]^2\;dx=\int_{1/a}^1 \frac{\sin(t)^2}{t^2}\; dt$$
Jetzt ist zu prüfen, ob dieses Integral für \(a \to \infty\) konvergiert. Dazu kann man das Majorantenkriterium benutzen: Der Integrand ist (wie im Hinweis gesagt) im Absolutbetrag durch 1 beschränkt. Daher existiert der Grenzwert.
Alternativ könnte man wissen, dass sich der Integrand im Nullpunkt stetig durch 1 fortsetzen lässt, so dass eigentlich gar kein uneigentliches Integral vorliegt.
Gruß Mathhilf