Aloha :)
Hier hilft partielle Integration weiter:$$I=\int\limits_0^{10}\underbrace{e^{0,06(10-t)}}_{=u'}\cdot\underbrace{(1236+134t)}_{v}\,dt$$$$\phantom{I}=\left[\underbrace{\frac{e^{0,06(10-t)}}{-0,06}}_{=u}\cdot\underbrace{(1236+134t)}_{v}\right]_0^{10}-\int\limits_0^{10}\underbrace{\frac{e^{0,06(10-t)}}{-0,06}}_{=u}\cdot\underbrace{134}_{v'}\,dt$$$$\phantom{I}=\left[-e^{0,06(10-t)}\cdot\frac{50(1236+134t)}{3}\right]_0^{10}+\frac{50}{3}\cdot134\int\limits_0^{10}e^{0,06(10-t)}\,dt$$$$\phantom{I}=\left[-e^{0,06(10-t)}\cdot\frac{50(1236+134t)}{3}\right]_0^{10}+\frac{50}{3}\cdot134\left[\frac{e^{0,06(10-t)}}{-0,06}\right]_0^{10}$$$$\phantom{I}=\left[-\frac{50(1236+1340)}{3}+e^{0,6}\cdot\frac{50\cdot1236}{3}\right]-\frac{50^2}{3^2}\cdot134\left[1-e^{0,6}\right]$$$$\phantom{I}=\frac{520\,400}{9}\,e^{0,6}-\frac{721\,400}{9}\approx25\,203,4026$$