Kritisch ist nur die Stelle \(x_0=0\). Der Grenzwert$$\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}h=\lim_{h\to0}\frac{f(h)-f(0)}h=\lim_{h\to0}\frac{h\sqrt{\lvert h\rvert}-0}h=\lim_{h\to0}\sqrt{\lvert h\rvert}$$existiert offenbar. Demnach ist \(f\) differenzierbar.