Aufgabe:
frage (1) (i). Für \( x \in]-\frac{\pi}{2}, \frac{3 \pi}{2}[ \) definieren wir \( f(x)=\sqrt{1+\sin x} \).
(a) Bestimmen Sie das Taylorpolynom erster Ordnung im Ursprung für \( f \).
(b), Wenn \( p(x)=a_{0}+a_{1} x \) das in Teil (a) bestimmte Taylorpolynom ist, dann zeigen Sie
\( |f(x)-p(x)| \leq \frac{9}{8} \sqrt{2}|x|^{2} \)
für alle \( x \in\left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \).
(ii). Auf dem \( \mathbb{R}^{2} \) definieren wir \( \|(x, y)\|=|x+y|+2|y-x| \).
(a) Zeigen Sie, dass \( \|\cdot\| \) eine Norm ist.
(b) Zeigen Sie explizit, dass \( \|\cdot\| \) äquivalent zur euklidischen Norm ist, in dem Sie \( A, B>0 \) angeben mit
\( A\|\cdot\| \leq\|\cdot\|_{2} \leq B\|\cdot\| \)
Hinweis: Die Zahlen \( A \) und \( B \) brauchen nicht optimal zu sein. Es ist nützlich, sich zu überlegen, wie man \( x \) und \( y \) durch \( x+y \) und \( x-y \) ausdrücken kann.
(c) Skizzieren Sie die Einheitskugel \( B_{1}(0)=\left\{(x, y) \in \mathbb{R}^{2} \mid\|(x, y)\|<1\right\} \).