Es sei \( V:=\left\{v \in \mathbb{R}^{2}|| v \mid=1\right\} . \) Somit können alle \( v \in V \) dargestellt werden als
v=\( \begin{pmatrix} cos(phi)\\sin(phi) \end{pmatrix} \).
Für Vektoren v1=\( \begin{pmatrix} cos(phi1+phi2)\\sin(phi1+phi2) \end{pmatrix} \) €V
definieren wir eine Addition durch
v1+v2= \( \begin{pmatrix} cos(phi1+phi2)\\sin(phi1+phi2) \end{pmatrix} \).
Für Skalier s€R definieren wir eine Multiplikation mit Vektoren v1€V durch
s*v1=\( \begin{pmatrix} cos(s*phi1)\\sin(s*phi1) \end{pmatrix} \).
Aufgabe: Geben Sie ein Erzeigendes System von V an.