Aloha :)
Wenn du das Kurvenintegral mal mit Vektoren schreibst$$E=\int\limits_C\vec K\,d\vec r$$erkennst du, dass ein Vektorfeld \(\vec K\), z.B. eine Kraft, mit einem infinitesimal kleinem Wegstück \(d\vec r\) multipliziert wird. Wegen "Arbeit = Kraft mal Weg" ist \(dE\coloneqq\vec K\cdot d\vec r\) die infinitesimale Arbeit, die diese Kraft entlang des Wegstücks \(d\vec r\) verrichtet. Das gesamte Integral ist also die Arbeit, die entlang des Weges \(C\) durch das Kraftfeld \(\vec K\) verrichtet wird. Die Physiker sprechen daher gerne von "Arbeitsintegral" statt von "Kurvenintegral".
Hier haben wir als Kraftfeld und Weg konkret gegeben:$$\vec K=\binom{x}{y}\quad;\quad\vec r=\binom{x}{y}=\binom{y^2-4}{y}\quad;\quad\vec r_1=\binom{-4}{0}\quad;\quad r_2=\binom{0}{-2}$$
Da wir dank der Gleichung \(x=y^2-4\) die \(x\)-Koordinate durch die \(y\)-Koordinate ausdrücken können, lässt sich das Kurvenintegral auf ein Integral über \(dy\) zurückführen:
$$E=\int\limits_{\vec r_1}^{\vec r_2}\vec K\,d\vec r=\int\limits_{\vec r_1}^{\vec r_2}\vec K(y)\cdot d\vec r(y)=\int\limits_{0}^{-2}\vec K(y)\cdot \frac{d\vec r(y)}{dy}\,dy=\int\limits_0^{-2}\binom{y^2-4}{y}\cdot\binom{2y}{1}\,dy$$$$\phantom{E}=\int\limits_0^{-2}\left((y^2-4)\cdot2y+y\cdot1\right)\,dy=\int\limits_0^{-2}\left(2y^3-7y\right)dy=\left[\frac{y^4}{2}-\frac{7y^2}{2}\right]_0^{-2}=-6$$