0 Daumen
319 Aufrufe

Aufgabe:

Nach x_1 ableiten$$f(x_{1},x_{2},x_{3})= \sqrt{x_{1}x_{2}x_{3}} $$


Problem/Ansatz:

$$\frac{d}{dx_{1}}f(x_{1},x_{2},x_{3})= \frac{1}{2}(x_{1}x_{2}x_{3})^{-\frac{1}{2}}\cdot\frac{d}{dx_{1}}[x_{1}x_{2}x_{3}] \\ = \frac{1}{2}(x_{1}x_{2}x_{3})^{-\frac{1}{2}}\cdot x_{2}x_{3} \\ = \frac{1}{2}(x_{1})^{-\frac{1}{2}}\cdot(x_{2}x_{3})^{\frac{1}{2}} \\ = \frac{ \sqrt{ x_{ 2 }x_{ 3 } }\cdot\sqrt{ x_{ 1 } } } { 2\sqrt{ x_{ 1}\cdot\sqrt{ x_{1 }}}} \\ = \frac{\sqrt{x_{1}x_{2}x_{3}}}{2 x_{1}}$$

Avatar von

1 Antwort

0 Daumen

Ja, das ist richtig

Gruß Mathhilf

Avatar von 14 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community