0 Daumen
717 Aufrufe

Text erkannt:

Bestimmen Sie den Abstand vom Punkt \( P(5|-14| 11) \) zu der Geraden \( g: \vec{x}=\left(\begin{array}{r}1 \\ -4 \\ 4\end{array}\right)+t\left(\begin{array}{r}-3 \\ 5 \\ -2\end{array}\right), \quad t \in \mathbb{R} \)
Bestimmen Sie zunächst den Lotfußpunkt \( L \) des Punktes \( P \) auf der Geraden \( g . \)
Wie groß ist der Abstand \( d(P, g) \) von \( P \) zu \( g \) ?
\( d(P, g)= \)
Hinweis:
- Eingabe von \( \sqrt{a} \) durch sqrt(a).

Aufgabe:

Hilfe1.PNG


Problem/Ansatz:

Brauche hilfe bei den Ansätzen und den dazugehörigen Lösungen. Danke schnomal

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Aloha :)

Auf der Geraden$$g\colon\vec x=\begin{pmatrix}1\\-4\\4\end{pmatrix}+t\begin{pmatrix}-3\\5\\-2\end{pmatrix}$$wählen wir irgendeinen beliebigen Punkt, am einfachsten den Ankerpunkt \(A(1|-4|4)\). Von diesem Punkt ziehen wir einen Vektor zum Punkt \(P(5|-14|11)\):

$$\overrightarrow{AP}=\vec p-\vec a=\begin{pmatrix}5\\-14\\11\end{pmatrix}-\begin{pmatrix}1\\-4\\4\end{pmatrix}=\begin{pmatrix}4\\-10\\7\end{pmatrix}$$Diesen Vektor projezieren wir nun auf die Gerade \(g\):

$$\overrightarrow{AP}_\parallel=\left(\frac{\begin{pmatrix}4\\-10\\7\end{pmatrix}\cdot\begin{pmatrix}-3\\5\\-2\end{pmatrix}}{\left\|\begin{pmatrix}-3\\5\\-2\end{pmatrix}\right\|^2}\right)\begin{pmatrix}-3\\5\\-2\end{pmatrix}=\frac{-12-50-14}{(-3)^2+5^2+(-2)^2}\begin{pmatrix}-3\\5\\-2\end{pmatrix}=-\frac{76}{38}\begin{pmatrix}-3\\5\\-2\end{pmatrix}$$$$\phantom{\overrightarrow{AP}_\parallel}=-2\begin{pmatrix}-3\\5\\-2\end{pmatrix}=\begin{pmatrix}6\\-10\\4\end{pmatrix}$$Der Vektor zum Lotfußpunkt \(L\) ist daher:

$$\vec\ell=\vec a+\overrightarrow{AP}_\parallel=\begin{pmatrix}1\\-4\\4\end{pmatrix}+\begin{pmatrix}6\\-10\\4\end{pmatrix}=\begin{pmatrix}7\\-14\\8\end{pmatrix}\quad\implies\quad\boxed{L=(7|-14|8)}$$

Der Abstand \(d\) ist die Länge des Vektors von \(L\) zu \(P\):

$$d=\overline{LP}=\left\|\overrightarrow{LP}\right\|=\left\|\vec p-\vec\ell\,\right\|=\left\|\begin{pmatrix}5\\-14\\11\end{pmatrix}-\begin{pmatrix}7\\-14\\8\end{pmatrix}\right\|=\left\|\begin{pmatrix}-2\\0\\3\end{pmatrix}\right\|$$$$\phantom{d}=\sqrt{(-2)^2+3^2}=\sqrt{13}\quad\implies\quad\boxed{d(P;g)=\sqrt{13}}$$

Avatar von 152 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community