Aloha :)
$$f(x;y)=x+y\quad;\quad g(x;y)=\frac{1}{x^2}+\frac{1}{y^2}\stackrel!=1$$
Nach Lagrange muss der Gradient der zu optimierenden Funktion proportional zum Gradienten der Nebenbedingung sein. Der Proportionalitätsfaktor \(\lambda\) heißt Lagrange Multiplikator.
$$\operatorname{grad}{f(x;y)}=\lambda\operatorname{grad}{g(x;y)}\implies\binom{1}{1}=\lambda\binom{-\frac{2}{x^3}}{-\frac{2}{y^3}}\implies$$$$-\lambda\frac{2}{x^3}=-\lambda\frac{2}{y^3}\implies x^3=y^3\implies x=y$$Dieses Resultat setzen wir in die Nebenbedingung ein und finden:$$1=\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{x^2}+\frac{1}{x^2}=\frac{2}{x^2}\implies x^2=2\implies x=\pm\sqrt2\implies y=\pm\sqrt2$$
Wir haben also zwei Extrema gefunden.$$E_1\left(\sqrt2\,\big|\,\sqrt2\right)\quad;\quad E_2\left(-\sqrt2\,\big|\,-\sqrt2\right)$$
Bei der Art der Extrema hatte ich mich vertan, siehe dazu bitte den Kommentar von Werner, er hat den Bug entdeckt und richtig gestellt ;)