Aufgabe:
Seien n, d ∈ N. Beweisen Sie:
(a) (Glaisher) Die Anzahl der Partitionen von n, deren Teile nicht durch d teilbar sind, ist gleich der Anzahl der Partitionen von n, in denen kein Teil d-mal (oder öfter) auftritt.
Hinweis: Der Fall d = 2 entspricht Satz 5.6(i).
(b) (MacMahon) Die Anzahl der Partitionen von n, bei denen jeder Teil mindestens zweimal auftritt, ist gleich der Anzahl der Partitionen von n in Teile, die nicht die Form ±1 + 6k haben.
(c) (Subbarao) Die Anzahl der Partitionen von n, bei denen jeder Teil genau zweimal, dreimal oder fünfmal auftritt, ist gleich der Anzahl der Partitionen von n in Teile der Form ±2 + 12k, ±3 + 12k oder 6 + 12k.
Könnt ihr mir bitte helfen? checke das einfach nicht