auf die Idee mit Q' muss man erst einmal kommen.
Ja - wobei mir ein anderer Punkt, der nicht auf dem Bild zu sehen ist, viel mehr Kopfzerbrechen bereitet hat. Du findest ihn als Schnittpunkt der Gerade durch \(PQ\) mit der Geraden durch \(AC\).
Für die Aufgabe ist er nicht notwendig, aber man benötigt ihn, um das Gebilde zu konstruieren ;-)
noch ein Hinweis: die rot gestrichelte Kurve ist eine Parabel mit Brennpunkt \(A\) und Leitgerade durch \(CQ'\) (blau gestrichelt). Diese Parabel ist die Ortskurve für alle Positionen von \(M\). Hat man das 'gesehen', dann fällt einem \(Q'\) in den Schoß.