Das \( ^v \) kennzeichnet duale Objekte:
$$ V^v = \{ g : V \to K ~|~ g \text{ linear}\} $$$$ \ker(f)^v = \{ g : \ker(f) \to K ~|~ g\text{ linear} \} $$$$ W^v = \{ h : W \to K ~|~ h \text{ linear}\} $$$$ f^v : W^v \to V^v, \varphi \mapsto \varphi \circ f $$
Zeige also, dass die Abbildung$$ \Psi : V^v \to \ker(f)^v, \psi \mapsto \psi|_{\ker(f)} $$- linear
- surjektiv
und dass
- \( \ker \Psi = \operatorname{im}(f^v) \)
ist. Die Inklusion \( \supseteq \) ist dabei trivial, die andere kann man sich je nach Vorwissen auch herleiten, indem man \( \dim \ker \Psi = \dim \operatorname{im}(f^v) \) zeigt. Das läuft auf \( \dim \operatorname{im}(f) = \dim \operatorname{im}(f^v) \) hinaus.