Es seien \( n, m \in \mathbb{N}, U \subseteq \mathbb{R}^{n} \) und \( V \subseteq \mathbb{R}^{m} \) offen sowie \( F: U \rightarrow V \) und \( G: V \rightarrow U \) total
differenzierbar mit \( G \circ F=\mathrm{id}_{U} \) und \( F \circ G=\mathrm{id}_{V} \). Zeigen Sie, dass dann bereits \( m=n \) gelten muss.
Hinweis: Eine Matrix \( A \in \mathbb{R}^{n \times m} \) heißt invertierbar, falls es eine Matrix \( B \in \mathbb{R}^{m \times n} \) gibt, welche \( A B=I_{n} \) und \( B A=I_{m} \) (Einheitsmatrix der Dimension \( n \) bzw. \( m \) ) erfüllt. Verwenden Sie die Tatsache, dass jede invertierbare Matrix quadratisch ist (d.h. es gilt \( m=n \) ).
Wie könnte ich hier vorgehen um das zu zeigen, stehe gerade ein wenig auf dem Schlauch.