Aloha :)
Das Schöne an der Aufgabe ist, dass du das Integral ja gar nicht auszurechnen brauchst. Du musst dir allerdings überlegen, wie man das Integral so umformt, dass man \(a\) und \(b\) ablesen kann.
Wir bewegen uns entlang des Weges$$\vec r=\binom{x}{y}=\binom{2\cos t}{2\sin t}\quad;\quad t\in[0;2\pi]$$durch das Feld$$f(x;y)=x^2+y^2+2xy$$Setzen wir darin die \(x\)- und \(y\)-Koordinate des Weges ein, erhalten wir:$$f(t)=f(x(t);y(t))=4\cos^2+4\sin^2 t+8\sin t\cos t=4\overbrace{(\cos^2t+\sin^2t)}^{=1}+8\sin t\cos t$$$$f(t)=8\cos t\sin t+4$$
Damit lautet nun das Integral:$$I=\int\limits_\gamma f(\vec r)\,dr=\int\limits_0^{2\pi}f(t)\left\|\frac{d\vec r}{dt}\right\|\,dt=\int\limits_0^{2\pi}\left(8\cos t\sin t+4\right)\left\|\binom{-2\sin t}{2\cos t}\right\|dt$$$$\phantom{I}=\int\limits_0^{2\pi}\left(8\cos t\sin t+4\right)\sqrt{4\sin^2t+4\cos^2t}\,dt$$$$\phantom{I}=\int\limits_0^{2\pi}\left(8\cos t\sin t+4\right)\cdot2\underbrace{\sqrt{\sin^2t+\cos^2t}}_{=1}\,dt$$$$\phantom{I}=\int\limits_0^{2\pi}\left(16\cos t\sin t+8\right)\,dt$$Es ist also \(a=16\) und \(b=8\).