Stetigkeit in (0,0):
ich zeige \(f(x_1,x_2)\rightarrow 0\) für \((x_1,x_2)\rightarrow (0,0)\) mit \((x_1,x_2)\neq (0,0)\)
Wegen \(0\leq \log(1+x)\leq x\) für alle \(x\geq 0\) gilt
\(0\leq \log(1+x_1^2x_2^2)\leq x_1^2x_2^2\), also
\(0\leq f(x_1,x_2)=\frac{\log(1+x_1^2x_2^2)x_2^2}{\sqrt{x_1^4+x_2^4}}\leq \frac{x_1^2x_2^4}{\sqrt{x_1^4 + x_2^4}}\).
Wegen \((x_1,x_2)\neq (0,0)\) müssen wir die Fälle \(x_1\neq 0\) und \(x_2\neq 0\) betrachten:
\(x_1\neq 0\Rightarrow f(x_1,x_2)\leq \frac{x_1^2x_2^4}{\sqrt{x_1^4}}=x_2^4\).
\(x_2\neq 0\Rightarrow f(x_1,x_2)\leq \frac{x_1^2x_2^4}{\sqrt{x_2^4}}=x_1^2x_2^2\).
Beide Fälle kann man zusammenfassen:
\(0\leq f(x_1,x_2)\leq \max(x_2^4,x_1^2x_2^2)=x_2^2\cdot \max(x_2^2,x_1^2)\rightarrow 0\)
für \((x_1,x_2)\rightarrow (0,0)\).