Text erkannt:
Die Funktion \( f: \mathbb{R}^{2} \rightarrow \mathbb{R} \) sei definiert durch
\( f\left(x_{1}, x_{2}\right):=\left\{\begin{array}{ccc} \frac{x_{1} x_{2}^{3}}{x_{1}^{2}+x_{2}^{4}} & , & \left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & , & \left(x_{1}, x_{2}\right)=(0,0) \end{array}\right. \)
(i) Zeigen Sie, dass \( f \) an der Stelle \( (0,0) \) stetig ist.
(ii) Zeigen Sie, dass \( f \) an der Stelle \( (0,0) \) nicht total differenzierbar ist.
Hinweis für (i): Es gilt \( \left|x_{1} x_{2}^{2}\right| \leq 1 / 2\left(x_{1}^{2}+x_{2}^{4}\right) \) für alle \( \left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} . \) Warum gilt dies?
Hinweis für (ii): Beachten Sie Bemerkung 1.7.2 sowie Satz 1.7.3.