Aloha :)
Eine Folge \((a_n)\) konvergiert gegen den Grenzwert \(a\), wenn es für alle \(\varepsilon\in\mathbb R^{>0}\) ein \(n_0\in\mathbb N\) gibt, sodass für alle \(n\ge n_0\) gilt: \(|a_n-a|<\varepsilon\).
In den Beweis wurde dies auf die Forderung \(n\stackrel!<(1+\varepsilon)^n\) zurückgeführt. In dem Folgenden geht es dann darum, ein \(n_0\) zu finden, ab dem diese Forderung für alle weiteren \(n\) gültig ist.
Ich finde den Beweis auch eher verwirrend und umständlich. Mit der Bernoulli-Ungleichung$$(1+x)^n\ge1+nx\quad\text{für }x\ge-1\;;\;n\in\mathbb N_0$$erhält man schnell folgende Abschätzung:
$$\left(1+\frac{1}{\sqrt n}\right)^n\ge1+\frac{n}{\sqrt n}=1+\sqrt n>\sqrt n=n^{1/2}\quad\implies$$$$\sqrt[n]{n}=n^{\frac{1}{n}}=\left(n^{1/2}\right)^{\frac{2}{n}}<\left(\left(1+\frac{1}{\sqrt n}\right)^n\right)^{\frac{2}{n}}=\left(1+\frac{1}{\sqrt n}\right)^2=1+\frac{2}{\sqrt n}+\frac 1n\le1+\frac{3}{\sqrt n}$$
Wählen wir nun ein \(\varepsilon>0\), so gilt:$$\left|\sqrt[n]{n}-1\right|\le\left|1+\frac3{\sqrt n}-1\right|=\frac3{\sqrt n}\stackrel!<\varepsilon\Longleftrightarrow\frac{9}{n}<\varepsilon^2\Longleftrightarrow n>\frac{9}{\varepsilon^2}$$Für alle \(n\ge n_0\) mit \(n_0=\left\lceil\frac{9}{\varepsilon^2}\right\rceil\) gilt also \(|\sqrt[n]{n}-1|<\varepsilon\). Damit ist der Grenzwert \(1\) bestätigt.