0 Daumen
517 Aufrufe

 

hier sind beispiel Aufgaben an den Ich nicht erkenne, ob es achsensymmetrisch oder punktsymmetrisch ist:

 

f(x)= (x-2)3(x-1) 

f(x)= x4-√5x2

f(x)= (x2-2x+3)(x+1)(x-1)

 

Wie kann ich die Variable c bestimmen, so dass der Graph der Funktion punkt bzw. achsensymmetrisch ist und  wen x gar nicht gegeben ist:

x3+4x+c

 

 

Avatar von

1 Antwort

0 Daumen
Hallo Lea,

um zu erkennen, ob eine Funktion achsen- bzw. punktsymmetrisch ist, guckt man sich die einzelnen Potenzen der Funktion an. Sind alle Potenzen gerade (2,4,6,etc.) , so ist die Funktion achsensymmetrisch. Sind alle Potenzen ungerade (1,3,5,etc.), so ist die Funktion punktsymmetrisch. Wenn gilt:

f(x)=f(-x) → Achsensymmetrie

f(x)=-f(-x) → Punktsymmetrie

Bei der Funktion f(x)=x³+4x+c sind sämtliche Potenzen ungerade, und somit ist die Funktion punktsymmetrisch, egal welchen Wert c annimmt.

LG
Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community