Aufgabe
Welche der folgenden Vektoren sind im Vektorraum (V, K, +, *) linear unabhängig?
(b) \( x^{3}+2, x^{2}-x, x^{2}+1 \) und 3 im Vektorraum \( \mathcal{F}(\mathbb{R}, \mathbb{R}) \) der Funktionen von \( \mathbb{R} \) nach \( \mathbb{R} \) über \( K=\mathbb{R} . \)
(c) \( \left(\begin{array}{c}1+i \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \) und \( \left(\begin{array}{c}2 \\ 0 \\ 1-i\end{array}\right) \) in \( V=\mathbb{C}^{3} \) über \( K=\mathbb{C} \)
(d) Die Vektoren aus Aufgabenteil (c) mit \( V=\mathbb{C}^{3} \),
diesmal über \( K=\mathbb{R} \).
Problem/Ansatz: