Hallo,
ich vermute mal:
$$\frac{2}{\frac{1}{a}+\frac{1}{b}} \leq \sqrt{ab} \leq \frac{a+b}{2}$$
$$\frac{2}{\frac{b}{ab}+\frac{a}{ab}} \leq \sqrt{ab} \leq \frac{a+b}{2}$$
$$\frac{2ab}{a+b} \leq \sqrt{ab} \leq \frac{a+b}{2}$$
$$\frac{4a^2b^2}{(a+b)^2} \leq {ab} \leq \frac{(a+b)^2}{4}$$
$$16a^2b^2\leq4ab(a+b)^2\leq(a+b)^4$$
$$16a^2b^2\leq4a^3b+8a^2b^2+4ab^3\leq a^4+4a^3b+6a^2b^2+4ab^3+b^4$$
Linke Ungleichung:
$$16a^2b^2\leq4a^3b+8a^2b^2+4ab^3$$
$$4ab\leq a^2+2ab+b^2$$
$$0\leq a^2-2ab+b^2$$
$$0\leq(a-b)^2~~~~\checkmark$$
Rechte Ungleichung:
$$4ab(a+b)^2\leq(a+b)^4$$
$$4ab\leq(a+b)^2$$
$$4ab\leq a^2+2ab+b^2$$
$$0\leq a^2-2ab+b^2$$
$$0\leq(a-b)^2~~~~\checkmark$$
:-)