\( f(x)=\sqrt{x} \)
\( \frac{d f(x)}{d x}=\lim \limits_{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim \limits_{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x}) \cdot(\sqrt{x+h}+\sqrt{x})}{h \cdot(\sqrt{x+h}+\sqrt{x})}=\lim \limits_{h \rightarrow 0} \frac{x+h-x}{(\sqrt{x+h}+\sqrt{x})}= \)
\( =\lim \limits_{h \rightarrow 0} \frac{h \cdot(\sqrt{x+h}+\sqrt{x})}{h \cdot \lim \limits_{h \rightarrow 0} \frac{1}{(\sqrt{x+h}+\sqrt{x})}}=\frac{1}{2 \cdot \sqrt{x}} \)
f(x)= 2\( x^{7} \) − cos(3x),
f´(x)=2*7*\( x^{7-1} \)+ sin(3x)*3 =14*\( x^{6} \)+ 3*sin(3x)
\( f(x)=\frac{\sin \left(x^{2}-2 \pi\right)}{\cos (x)} \)
\( \frac{d f(x)}{d x}=\frac{\left(\cos \left(x^{2}-2 \pi\right) \cdot 2 x \cdot \cos (x)\right)-\sin \left(x^{2}-2 \pi\right) \cdot(-\sin (x))}{\cos ^{2}(x)} \)