(a) Gegeben sei die lineare Abbildung \( S \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right) \), die jeder Polynomfunktion ihre Ableitungsfunktion zuordnet. Bestimmen Sie eine Basis \( B \) von \( \mathcal{P}_{3}(\mathbb{R}) \) und eine Basis \( C \) von \( \mathcal{P}_{2}(\mathbb{R}) \), sodass
\( \mathcal{M}(S, B, C)=\left(\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right) \)
(b) Gegeben seien die Basen
\( \begin{aligned} B &=(1,0,0),(1,1,0),(1,1,1) & & \text { von } \mathbb{R}^{3}, \\ B^{\prime} &=(1,0,1),(0,1,0),(1,1,0) & & \text { von } \mathbb{R}^{3}, \\ C &=(1,0),(1,1) & & \text { von } \mathbb{R}^{2}, \\ C^{\prime} &=(-1,1),(0,1) & & \text { von } \mathbb{R}^{2} . \end{aligned} \)
Bestimmen Sie
i) \( \mathcal{M}(T, B, C) \)
iii) \( \mathcal{M}\left(T, B^{\prime}, C\right) \)
ii) \( \mathcal{M}\left(T, B, C^{\prime}\right) \)
iv) \( \mathcal{M}\left(T, B^{\prime}, C^{\prime}\right) \)
\( T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \)