Aloha :)
Weil du es bist, rechne ich dir die Aufgabe nochmal vor...
zu a) Die momentane Änderungsrate der Funktion$$F(x;y)=11x^{0,6}y^{0,3}$$ist durch das totale Differential gegeben:$$dF(x;y)=\frac{\partial F}{\partial x}\,dx+\frac{\partial F}{\partial y}\,dy=11\cdot0,6x^{-0,4}y^{0,3}\,dx+11\cdot0,3x^{0,6}y^{-0,7}dy$$$$\phantom{dF(x;y)}=\frac{0,6}{x}\cdot11x^{0,6}y^{0,3}\,dx+\frac{0,3}{y}\cdot11x^{0,6}\cdot x^{0,3}\,dy$$$$\phantom{dF(x;y)}=\frac{0,6}{x}\cdot F(x;y)\,dx+\frac{0,3}{y}\cdot F(x;y)\,dy$$Da hier das Niveau der Funktion \(F\) beibehalten werden soll, ist die Änderung \(dF(x;y)\) gleich \(0\). Wir können daher die linke Seite der Gleichung gleich \(0\) setzen und dann direkt auf beiden Seiten durch \(F(x;y)\) dividieren:$$0=\frac{0,6}{x}\cdot F(x;y)\,dx+\frac{0,3}{y}\cdot F(x;y)\,dy\quad\implies\quad\frac{0,6}{x}\,dx+\frac{0,3}{y}\,dy=0$$Das stellen wir nach \(dy\) um und erhalten:$$dy=-\frac{y}{0,3}\cdot\frac{0,6}{x}\,dx=-2\cdot\frac yx\cdot dx$$Speziell in diesem Fall betrachten wir die Änderungsraten im Punkt \(a=(3;7)\), sodass \(x=3\) und \(y=7\) gilt. Das heißt für unser Ergebnis:$$dy=-\frac{14}{3}\,dx$$Wenn sich also \(x\) um eine Einheit \(dx=1\) ändert, muss sich \(y\) um \(dy=-\frac{14}{3}\approx-4,6667\) Einheiten ändern, damit das Niveau konstant bleibt.
zu c) Hier musst du einfach \(dx=-0,3\) einsetzen:$$dy=-\frac{14}{3}\cdot(-0,3)=\frac{14}{3}\cdot\frac{3}{10}=\frac75=1,4$$
zu b) Nach der Änderung muss derselbe Funktionswert rauskommen wie vor der Änderung:$$\left.F(3;7)\stackrel!=F(2,7\,;\,7+\Delta y)\quad\right|\text{einsetzen}$$$$\left.38,1237=11\cdot2,7^{0,6}\cdot(7+\Delta y)^{0,3}\quad\right|\colon(11\cdot2,7^{0,6})$$$$\left.1,90978=(7+\Delta y)^{0,3}\quad\right|(\cdots)^{\frac{1}{0,3}}$$$$\left.8,64198=7+\Delta y\quad\right|-7$$$$\Delta y=1,64198$$Das passt in etwa zu deinem Wert \(7+1,64198=8,64198\).