Vollständigere Frage?
Titel: Eigenschaften alternierender Multilinearformen/Beweis von Aussagen
Stichworte: lineare-algebra,vektoren,vektorraum,tupel
Text erkannt:
Seien \( V \) ein \( K \)-Vektorraum, \( m \in \mathbb{N} \) sowie \( \alpha \in \operatorname{Alt}^{m}(V) . \) Beweisen Sie die folgenden Aussagen.
a) Scherungsinvarianz: Sei \( \left(v_{1}, \ldots, v_{m}\right) \in V^{m} \), und seien \( j, k \in\{1, \ldots, m\} \) mit \( j \neq k \). Sei außer\( \operatorname{dem}\left(w_{1}, \ldots, w_{m}\right) \in V^{m} \) definiert durch
\( w_{l}:=v_{l}+\mathbb{1}_{l=j} v_{k}=\left\{\begin{array}{ll} v_{l}, & l \neq j, \\ v_{j}+v_{k}, & l=j . \end{array}\right. \)
Dann gilt \( \alpha\left(v_{1}, \ldots, v_{m}\right)=\alpha\left(w_{1}, \ldots, w_{m}\right) \).
b) Wenn ein Tupel \( \left(v_{1}, \ldots, v_{m}\right) \in V^{m} \) linear abhängig ist, gilt \( \alpha\left(v_{1}, \ldots, v_{m}\right)=0 \).
c) Sei \( \left(v_{1}, \ldots, v_{m}\right) \in V^{m} \), und seien \( k, j \in\{1, \ldots, m\} \) mit \( k \neq j . \) Sei zudem \( \left(w_{1}, \ldots, w_{m}\right) \in V^{m} \) definiert durch
\( w_{l}:=\left\{\begin{array}{ll} v_{l}, & l \notin\{k, j\} \\ v_{j}, & l=k \\ v_{k}, & l=j \end{array}\right. \)
Dann gilt \( \alpha\left(v_{1}, \ldots, v_{m}\right)=-\alpha\left(w_{1}, \ldots, w_{m}\right) \).
Hinweis: Vielleicht hilft es Ihnen, sich die Situation zunächst im Spezialfall \( m=2 \) klarzumachen.
Hallo liebe Mathelounge-Community,
ich brauche Hilfe für diese Aufgabe. Tipps, Denkansatz etc. wären sehr hilfreich. Ich bedanke mich im voraus für eure Unterstützung