Aufgabe:
A30 (Lineare Abbildungen)
Seien \( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) lineare Abbildungen mit
\( \begin{array}{l} f\left(\vec{e}_{1}\right)=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right), \quad f\left(\vec{e}_{2}\right)=\left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right), \quad f\left(\vec{e}_{3}\right)=\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \\ g\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right)=\left(\begin{array}{l} 2 \\ 2 \\ 2 \end{array}\right), \quad g\left(\begin{array}{l} 2 \\ 1 \\ 1 \end{array}\right)=\left(\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right), \quad g\left(\begin{array}{l} 1 \\ 3 \\ 1 \end{array}\right)=\left(\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right), \\ h\left(\begin{array}{l} 1 \\ 2 \end{array}\right)=\left(\begin{array}{c} 9 \\ 9 \end{array}\right), \quad h\left(\begin{array}{c} -1 \\ 3 \end{array}\right)=\left(\begin{array}{c} 11 \\ 1 \end{array}\right) . \end{array} \)
\( f, g, h \) sind also bezüglich einer Basis gegeben ( \( f \) bezüglich der Standardbasis des \( \mathbb{R}^{3} \) ). Per Linearer Fortsetzung sind damit die linearen Abbildungen \( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) vollständig definiert.
b) Geben Sie \( g(-1,3,-1) \) an.
Vorschlag: Berechnen Sie zunächst, wie sich der Vektor \( \vec{x}=(-1,3,-1)^{T} \) als Linearkombination der Basisvektoren, auf denen \( g \) gegeben ist, darstellen lässt.
c) Geben \( \operatorname{Sie} h\left(\vec{e}_{2}\right) \) an.
Tipp: Addieren Sie die beiden \( h \)-Gleichungen, und nutzen Sie dann die Linearität von \( h \) aus.
Problem/Ansatz:
Verstehe nich wie man hier vorgehen soll