Aufgabe:
Sei V ein endlich-dimensionaler Vektorraum über K, n = dim V und f ∈ End(V ). Für
ein v ∈ V sei {v, f (v), . . . , f n−1(v)} eine Basis von V . Es gibt also a1, . . . , an−1 ∈ K,
sodass
f n(v) = an−1f n−1(v) + . . . + a1f (v) + a0v.
Zeigen Sie: det(f ) = (−1)n+1a0.
Problem/Ansatz:
Determinante der Abbildungsmatrix, aber komme nicht auf sie