Aufgabe:
Gegeben sind die beiden Vektoren \( \vec{a}=\left(\begin{array}{l}a x \\ a y \\ a z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) \) und \( \vec{b}=\left(\begin{array}{l}b x \\ b y \\ b z\end{array}\right)=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right) \) Bestimmen Sie einen beliebigen Vektor \( \vec{c}=\left(\begin{array}{l}c x \\ c y \\ c z\end{array}\right) \), der in der durch die Vektoren \( \vec{a} \) und \( \vec{b} \) aufgespannten Ebene liegt, aber kein Vielfaches von \( \vec{a} \) oder \( \vec{b} \) ist.
z.B.; \( c=(1,1,2 / 5) \)
Problem:
- Wie stelle ich die Ebene auf und finde ein Vektor der IN der Ebene liegt?