Text erkannt:
1.6. Theorem. Let \( F \) be an arbitrary field, let \( n \geq 1 \) and let \( a \in F \). Then \( X^{n}-a \quad \) is irreducible over \( F \)
if and only if \( a \notin F^{p} \) for all primes \( p \) dividing \( n \) and \( a \notin-4 F^{4} \) whenever \( 4 \mid n . \)
Aus Karpilovsky, Topics in Field Theory