Aloha :)
Willkommen in der Mathelounge... \o/
$$f(x)=\frac{2x^2-5x+2}{x^2-x-2}=\frac{2x^2-2x-4-3x+6}{x^2-x-2}=\frac{2x^2-2x-4}{x^2-x-2}+\frac{-3x+6}{x^2-x-2}$$$$f(x)=2+\frac{-3x+6}{x^2-x-2}$$Bis dahin hast du also schon mal richtig gerechnet.
Du hättest aber noch weiter vereinfachen können, denn:$$f(x)=2+\frac{-3(x-2)}{(x+1)(x-2)}=2-\frac{3}{x+1}$$Die Ableitung davon ist:$$f'(x)=\frac{3}{(x+1)^2}$$
Du hast dich in deiner Rechnung irgendwo verrechnet, denn dein Ansatz stimmt:$$f'(x)=\frac{(-3)(x^2-x-2)-(-3x+6)(2x-1)}{(x^2-x-2)^2}=\frac{3x^2-12x+12}{(x^2-x-2)^2}$$$$\phantom{f'(x)}=\frac{3(x^2-4x+4)}{(\,(x+1)(x-2)\,)^2}=\frac{3(x-2)^2}{(x+1)^2(x-2)^2}=\frac{3}{(x+1)^2}$$