Aloha :)
Willkommen in der Mathelounge... \o/
$$e^x=\sum\limits_{n=0}^\infty\frac{x^n}{n!}\approx1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}+\frac{x^6}{720}$$
Wegen \(\frac{1}{\sqrt e}=\frac{1}{e^{1/2}}=e^{-\frac12}\) musst du für \(x=-\frac12\) einsetzen:$$\frac{1}{\sqrt e}\approx\frac{27\,949}{46\,080}=0,6065321180\overline5$$
Die Fehlerabschätzung ist das Maximum des nächstfolgenden Terms \(\left|\frac{\eta^7}{5040}\right|\) der Tayloreintwichlung, wobei \(\eta\in\left[-\frac12;x_0\right]=\left[-\frac12\;0\right]\) so gewählt werden muss, dass der Term maximal wird. Das leifert uns hier den maximalen Fehler:$$\Delta=\left|\frac{\left(-\frac12\right)^7}{5040}\right|=\frac{1}{645\,120}\approx1,55\cdot10^{-6}$$Das Ergebnis sollte also erst in der 6-ten Nachkommastelle vom korrekten Wergebnis abweichen.