Unter einer Stammfunktion einer reellen Funktion f versteht man eine differenzierbare Funktion F, deren Ableitungsfunktion F' mit f übereinstimmt. Ist also f auf einem Intervall I definiert, so muss F auf I definiert und differenzierbar sein, und es muss für jede Zahl x aus I gelten: F'(x)=f(x)
Weiterhin gilt:
Jede auf einem Intervall stetige Funktion besitzt eine Stammfunktion
Ist f auf I integrierbar, aber nicht überall stetig, dann existiert zwar die Integralfunktion, sie braucht jedoch an den Stellen, an denen f nicht stetig ist, nicht differenzierbar zu sein, ist also im Allgemeinen keine Stammfunktion.
Notwendig für die Existenz einer Stammfunktion ist, dass die Funktion den Zwischenwertsatz erfüllt. Dies folgt aus dem Zwischenwertsatz für Ableitungen.
Laut wikipedia.