Aloha :)
Bei unendlichen Summen solltest du immer an eine geometrische Reihe denken:$$\sum\limits_{n=0}^\infty q^n=\frac{1}{1-q}\quad\text{falls }|q|<1$$
Unsere Ziel ist es daher, die gegebene Summe in die Form einer geometrischen Reihe zu bringen:
$$S=\sum\limits_{n=0}^\infty\frac{\sqrt{5\cdot16^n}}{8\cdot 7^{n-2}}=\sum\limits_{n=0}^\infty\frac{\sqrt{5}\cdot\sqrt{16^n}}{8\cdot 7^{n-2}}=\sum\limits_{n=0}^\infty\frac{\sqrt{5}\cdot(\sqrt{16})^n}{8\cdot 7^{n-2}}=\sum\limits_{n=0}^\infty\frac{\sqrt{5}\cdot4^n\cdot7^2}{8\cdot 7^{n-2}\cdot7^2}$$$$\phantom{S}=\frac{\sqrt5\cdot49}{8}\sum\limits_{n=0}^\infty\frac{4^n}{7^n}=\frac{\sqrt5\cdot49}{8}\sum\limits_{n=0}^\infty\left(\frac{4}{7}\right)^n=\frac{\sqrt5\cdot49}{8}\cdot\frac{1}{1-\frac47}=\frac{\sqrt5\cdot49}{8}\cdot\frac{1}{\frac37}$$$$\phantom{S}=\frac{\sqrt5\cdot49}{8}\cdot\frac{7}{3}=\frac{343\cdot\sqrt5}{24}\approx31,9571$$