Sei \( 0 \neq \mu \in \mathbb{K}, p \in I_{m} \). Zeigen Sie, dass \( E_{m,\left[z_{p} \rightarrow \mu z_{p}\right]}^{-1}=E_{m,\left[z_{p} \rightarrow \mu^{-1} z_{p}\right]} \in \mathbb{K}^{m, m} \) gilt.
hat jemand eine Idee?
Weil noch niemand geantwortet hat: Ich vermute, dass nicht viele ohne Erläuterung erkennen, was diese Formeln bedeuten....
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos