Aloha :)
$$(f\circ g)'(r,\varphi)=\binom{\frac{\partial f}{\partial x}\cdot\frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\cdot\frac{\partial y}{\partial r}}{\frac{\partial f}{\partial x}\cdot\frac{\partial x}{\partial \varphi}+\frac{\partial f}{\partial y}\cdot\frac{\partial y}{\partial \varphi}}=\binom{ye^{xy}\cdot\cos\varphi+xe^{xy}\cdot\sin\varphi}{-ye^{xy}\cdot r\sin\varphi+xe^{xy}\cdot r\cos\varphi}$$$$\phantom{(f\circ g)'(r,\varphi)}=e^{r\cos\varphi\,r\sin\varphi}\binom{r\sin\varphi\cos\varphi+r\cos\varphi\sin\varphi}{-r\sin\varphi\, r\sin\varphi+r\cos\varphi\,r\cos\varphi}$$$$\phantom{(f\circ g)'(r,\varphi)}=e^{r^2\cos\varphi\,r\sin\varphi}\binom{2r\sin\varphi\cos\varphi}{r^2\cos^2\varphi-r^2\sin^2\varphi}=e^{\frac {r^2}{2}\sin(2\varphi)}\binom{r\sin(2\varphi)}{r^2\cos(2\varphi)}$$
$$(f\circ g)'(s,t)=\binom{\frac{\partial f}{\partial x}\cdot\frac{\partial x}{\partial s}+\frac{\partial f}{\partial y}\cdot\frac{\partial y}{\partial s}+\frac{\partial f}{\partial z}\cdot\frac{\partial z}{\partial s}}{\frac{\partial f}{\partial x}\cdot\frac{\partial x}{\partial t}+\frac{\partial f}{\partial y}\cdot\frac{\partial y}{\partial t}+\frac{\partial f}{\partial z}\cdot\frac{\partial z}{\partial t}}=\binom{2\cdot2s+z\cdot1+y\cdot0}{2\cdot2+z\cdot(-1)+y\cdot2}$$$$\phantom{(f\circ g)'(s,t)}=\binom{4s+z}{4-z+2y}=\binom{4s+2t}{4-2t+2(s-t)}=\binom{4s+2t}{4+2s-4t}$$
$$(g\circ f)'(s,t)=\begin{pmatrix}\frac{\partial g_1}{\partial x}\cdot\frac{\partial x}{\partial s}+\frac{\partial g_1}{\partial y}\cdot\frac{\partial y}{\partial s}+\frac{\partial g_1}{\partial z}\cdot\frac{\partial z}{\partial s} & \frac{\partial g_1}{\partial x}\cdot\frac{\partial x}{\partial t}+\frac{\partial g_1}{\partial y}\cdot\frac{\partial y}{\partial t}+\frac{\partial g_1}{\partial z}\cdot\frac{\partial z}{\partial t}\\[1ex]\frac{\partial g_2}{\partial x}\cdot\frac{\partial x}{\partial s}+\frac{\partial g_2}{\partial y}\cdot\frac{\partial y}{\partial s}+\frac{\partial g_2}{\partial z}\cdot\frac{\partial z}{\partial s} & \frac{\partial g_2}{\partial x}\cdot\frac{\partial x}{\partial t}+\frac{\partial g_2}{\partial y}\cdot\frac{\partial y}{\partial t}+\frac{\partial g_2}{\partial z}\cdot\frac{\partial z}{\partial t}\end{pmatrix}$$$$\phantom{(g\circ f)'(s,t)}=\begin{pmatrix}y\cdot2+x\cdot1+0\cdot0 & y\cdot1+x\cdot0+0\cdot2t\\[1ex](-1)\cdot2+0\cdot1+1\cdot0 & (-1)\cdot1+0\cdot0+1\cdot2t\end{pmatrix}$$$$\phantom{(g\circ f)'(s,t)}=\begin{pmatrix}2(s-1)+(2s+t-1) & s-1\\[1ex]-2 & 2t-1\end{pmatrix}=\begin{pmatrix}4s+t-3 & s-1\\[1ex]-2 & 2t-1\end{pmatrix}$$