Aloha :)
$$I=\int\limits_{1/2}^{3/2}\frac{1}{\sqrt{4x^2-4x+5}}\,dx=\int\limits_{1/2}^{3/2}\frac{1}{\sqrt{4+(4x^2-4x+1)}}\,dx=\int\limits_{1/2}^{3/2}\frac{1}{\sqrt{4+4\left(x-\frac12\right)^2}}\,dx$$$$\phantom{I}=\frac12\int\limits_{1/2}^{3/2}\frac{1}{\sqrt{1+\left(x-\frac12\right)^2}}\,dx$$
Substituiere:\(\quad u\coloneqq x-\frac12\quad;\quad dx=du\quad;\quad u(1/2)=0\quad;\quad u(3/2)=1\)
$$I=\frac12\int\limits_0^1\frac{1}{\sqrt{1+u^2}}\,du=\frac12\left[\operatorname{arcsinh}(u)\right]_0^1=\frac12\operatorname{arcsinh}(1)$$
Bleibt zu zeigen, dass \(\operatorname{arcsinh}(1)=\ln(1+\sqrt2)\) ist:
$$\sinh(\ln(1+\sqrt2))=\frac{e^{\ln(1+\sqrt2)}-e^{-\ln(1+\sqrt2)}}{2}=\frac{(1+\sqrt2)-\frac{1}{1+\sqrt2}}{2}=\frac{\frac{(1+\sqrt2)^2-1}{1+\sqrt2}}{2}=\frac{\frac{2\sqrt2+2}{1+\sqrt2}}{2}=1$$Also ist: \(\quad\operatorname{arcsinh}(1)=\ln(1+\sqrt2)\)