Hallo,
wir bestimmen eine Unterteilung des Intervalls [0,1] mit der wir die Differenz zwischen Ober- und Untersumme O-U "kleinkriegen":
Wir wählen als Unterteilungspunkt: 0,1/n und k/n^2 mit k=n+1, ..,n^2. Wir untersuchen den Beitrag, den die einzelnen Intervalle zur Differenz O-U:
1. [0,1/n]: Hier nimm f(x) höchstens den Wert 1/n an und mindesten den Wert -1/n. Der Beitrag zur Differenz lässt sich also abschätzen durch ((Max von f - Min von f)*Intervallbreite) durch: \(\frac{2}{n^2}\)
2. Das Intervall [k/n^2,(k+1)/n^2] enthält einen der Teilpunkte 1/j mit j=2,3,...,n. Dann ist das Max von kleiner gleich 1 und das Min größer gleich -1 (das kann man genauer machen, egal), also ist der Beitrag: {\frac{2}{n^2}\). Von diesen Intervallen gibt es höchstens n.
3. Das Intervall [k/n^2,(k+1)/n^2] liegt ganz in A oder B. Dann ist das Max von f im Fall A gleich (k+1)/n^2 und das Min gleich k/n^2, also ist der Beitrag: {\frac{1}{n^4}\). Von diesen Intervallen gibt es höchstens n^2.
Insgesamt sind die Beiträge also (grob abgeschätzt):
$$\frac{2}{n^2}+n\frac{2}{n^2}+n^2\frac{1}{n^4} \to 0 \quad (n \to \infty)$$