Gesucht Mittelpunkt M(x,y) mit den quadratischen Abständen
d^2(MA) = (-4-x)^2 + (7-y)^2
d^2(MB) = (0-x)^2 + (-5-y)^2
d^2(MC) = (8-x)^2 + (3-y)^2
GLS:
(Ia): (-4-x)^2 + (7-y)^2 = r^2
(Ib): (0-x)^2 + (-5-y)^2 = r^2
(Ic): (8-x)^2 + (3-y)^2 = r^2
Lösung des GLS:
(Ia): x^2 + 8x + y^2 - 14y + 65 = r^2
(Ib): x^2 + y^2 + 10y + 25 = r^2
(Ic): x^2 - 16x + y^2 - 6y + 73 = r^2
###
(Ia)=(Ib): x^2 + 8x + y^2 - 14y + 65 = x^2 + y^2 + 10y + 25
(Ia)=(Ib): 8x - 14y + 65 = 10y + 25
(Ia)=(Ib): 8x - 24y + 40 = 0 → y = x/3 + 5/3
###
(Ic)=(Ib): x^2 - 16x + y^2 - 6y + 73 = x^2 + y^2 + 10y + 25
(Ic)=(Ib): -16x - 6y + 73 = 10y + 25
(Ic)=(Ib): -16x - 16y + 48 = 0
(Ic)=(Ib): -16x - 16[x/3 + 5/3] + 48 = 0
(Ic)=(Ib): -64/3x +64/3 = 0 → x = 1 → y = 2
r^2 = 50 ergibt aus jedem (Ia),(Ib),(Ic) -> Radius = \( \sqrt{50} \)