Gesucht Mittelpunkt M(x,y) mit den quadratischen Abständen
d2(MA) = (-4-x)2 + (7-y)2
d2(MB) = (0-x)2 + (-5-y)2
d2(MC) = (8-x)2 + (3-y)2
GLS:
(Ia): (-4-x)2 + (7-y)2 = r2
(Ib): (0-x)2 + (-5-y)2 = r2
(Ic): (8-x)2 + (3-y)2 = r2
Lösung des GLS:
(Ia): x2 + 8x + y2 - 14y + 65 = r2
(Ib): x2 + y2 + 10y + 25 = r2
(Ic): x2 - 16x + y2 - 6y + 73 = r2
###
(Ia)=(Ib): x2 + 8x + y2 - 14y + 65 = x2 + y2 + 10y + 25
(Ia)=(Ib): 8x - 14y + 65 = 10y + 25
(Ia)=(Ib): 8x - 24y + 40 = 0 → y = x/3 + 5/3
###
(Ic)=(Ib): x2 - 16x + y2 - 6y + 73 = x2 + y2 + 10y + 25
(Ic)=(Ib): -16x - 6y + 73 = 10y + 25
(Ic)=(Ib): -16x - 16y + 48 = 0
(Ic)=(Ib): -16x - 16[x/3 + 5/3] + 48 = 0
(Ic)=(Ib): -64/3x +64/3 = 0 → x = 1 → y = 2
r^2 = 50 ergibt aus jedem (Ia),(Ib),(Ic) -> Radius = 50