\( tan(z + w) = \frac{sin(z+w)}{cos(z+w)} \)
Wegen:
\( sin(z+w) = sin(z)*cos(w)+cos(z)*sin(w) \)
\( cos(z+w) = cos(z)*cos(w)-sin(z)*sin(w) \)
folgt:
\( tan(z + w) = \frac{sin(z)*cos(w)+cos(z)*sin(w)}{cos(z)*cos(w)-sin(z)*sin(w)} \)
Wegen cos(w) = sin(w)/tan(w) folgt
\( tan(z + w) = \frac{sin(z)*\frac{sin(w)}{tan(w)}+\frac{sin(z)}{tan(z)}*sin(w)}{\frac{sin(z)}{tan(z)}*\frac{sin(w)}{tan(w)}-sin(z)*sin(w)} \)
\( tan(z + w) = \frac{\frac{sin(z)*sin(w)}{tan(w)}+\frac{sin(z)*sin(w)}{tan(z)}}{\frac{sin(z)*sin(w)}{tan(z)*tan(w)}-sin(z)*sin(w)} \)
\( tan(z + w) = \frac{sin(z)*sin(w)*\frac{1}{tan(w)}+\frac{1}{tan(z)}}{sin(z)*sin(w)*\frac{1}{tan(z)*tan(w)}-1} \)
\( tan(z + w) = \frac{\frac{1}{tan(w)}+\frac{1}{tan(z)}}{\frac{1}{tan(z)*tan(w)}-1} \)
\( tan(z + w) = \frac{\frac{tan(w)+tan(z)}{tan(z)tan(w)}}{\frac{1-tan(z)*tan(w)}{tan(z)*tan(w)}} \)
\( tan(z + w) = \frac{tan(w)+tan(z)}{{1-tan(z)*tan(w)}} \)