Alg:
\( \vec{c}_{n}=\vec{e}_{n}-\sum \limits_{j=1}^{n-1}\left(\vec{o}_{j} \cdot \vec{e}_{n}\right) \vec{o}_{j} \Rightarrow \vec{o}_{n}=\frac{\vec{c}_{n}}{\left|\vec{c}_{n}\right|} \)
\( n=1: \vec{o}_{1}=\vec{c}_{1}=\frac{\vec{e}_{1}}{\left\|\overrightarrow{e_{1}}\right\|} \)
\( n=2: \vec{c}_{2}=\vec{e}_{2}-\left(\vec{o}_{1} \cdot \vec{e}_{2}\right) \vec{o}_{1}, \Rightarrow \vec{o}_{2}=\frac{\vec{c}_{2}}{\left\|\overrightarrow{c_{2}}\right\|} \)
\( n=3: \vec{c}_{3}=\vec{e}_{3}-\left(\vec{o}_{2} \cdot \vec{e}_{3}\right) \vec{o}_{2}-\left(\overrightarrow{o_{1}} \cdot \vec{e}_{3}\right) \vec{o}_{1}, \Rightarrow \vec{o}_{3}=\frac{\vec{c}_{3}}{\left\|\overrightarrow{c_{3}}\right\|} \)
Gehe zu
https://www.geogebra.org/classic/qcq2zsfv
E:={{1,0,0},{1, 1,0},{ 1,1,1 }}
cdot2(vv,ww):=Sum(vv ww {{1,0,0},{0,2,0},{0,0,3}});
cdot(cc):=Sum(cc cc {{1,0,0},{0,2,0},{0,0,3}});
Function Eingabe mit Keep Input [ √ ]
\(O3 \, := \, \left(\begin{array}{rrr}1&0&0\\0&\frac{1}{\sqrt{2}}&0\\0&0&\frac{1}{\sqrt{3}}\\\end{array}\right)\)