Sei \( (V,\langle., .\rangle) \) ein endlichdimensionaler euklidischer Vektorraum und \( \mathcal{W} \) ein Orthonormalsystem von \( V \). Beweisen Sie:
\( \mathcal{W} \) ist eine Orthonormalbasis von \( V \Rightarrow \) Ist \( x \in V \) und \( x \perp \mathcal{W} \), so ist \( x=0 \)