Aufgabe: Berechnung einer Seite in einem rechtwinkligen sphärischen Dreieck
Problem/Ansatz:
In einem rechtwinkligen sphärischen Dreieck sind gegeben der Winkel α = 60° und die ihm anliegende eine Seite b = 45°. Gefragt ist nach der anderen anliegenden Seite c.
Gemäß der Neper-Regel ist der Kosinus eines Winkels gleich dem Produkt der Kotangens der beiden anliegenden Seiten.
Folglich rechne ich so:
(1) cos 60° = cot 45° mal cot c
(2) cos 60° = 1/tan 45° mal 1/tan c
(3) (cos 60°)/1/tan 45° = 1/tan c
(4) tan c = 1/(cos 60° mal tan 45°)
(5) tan c = 1/(1 mal ½)
(6) tan c = 2
(7) c = 63,4°
Die Verfasser meines Lehrbuchs kommen zum gleichen Ergebnis, beginnen ihre Rechnung jedoch mit der Gleichung:
cos 60° = tan 45°/tan c
Warum ist mein Ansatz cot 45° mal cot c gleich dem Ansatz tan 45°/tan c?