Aloha :)
Betrachte zuerst nur den Bruch ohne Potenzen:$$\frac{z_1\cdot z_2}{z_3}=\frac{\left(\frac{\sqrt3}{2}+\frac{3}{2}\,i\right)\left(-1+i\right)}{-\frac{3}{2}+\frac{\sqrt{3}}{2}\,i}=\frac{\left(\frac{\sqrt3}{2}+\frac{3}{2}\,i\right)\left(-1+i\right)}{\frac{3}{2}\,i^2+\frac{\sqrt{3}}{2}\,i}=\frac{\left(\frac{\sqrt3}{2}+\frac{3}{2}\,i\right)\left(-1+i\right)}{i\left(\frac{3}{2}\,i+\frac{\sqrt{3}}{2}i\right)}$$$$\phantom{\frac{z_1\cdot z_2}{z_3}}=\frac{-1+i}{i}=\frac{i^2+i}{i}=\frac{i(i+1)}{i}=i+1$$
Damit ist nun:$$\frac{z_1^6\cdot z_2^8}{z_3^6}=\left(\frac{z_1\cdot z_2}{z_3}\right)^6\cdot z_2^2=(i+1)^6\cdot(-1+i)^2=(i+1)^4(i+1)^2(i-1)^2$$$$\phantom{\frac{z_1^6\cdot z_2^8}{z_3^6}}=(i^4+3i^3+6i^2+3i+1)(i^2-1)^2=(1-3i-6+3i+1)(-1-1)^2$$$$\phantom{\frac{z_1^6\cdot z_2^8}{z_3^6}}=(-4)\cdot(-2)^2=-16$$