Aloha :)
$$f(x)=\left(x^5+\frac1x\right)^4-\frac{1}{x^4}=\frac{x^4\left(x^5+\frac1x\right)^4}{x^4}-\frac{1}{x^4}=\frac{\left(x^6+1\right)^4-1}{x^4}$$Für \(x\to0\) konvergieren Zähler und Nenner beide unabhängig voneinander gegen \(0\), daher können wir die Regel von L'Hospital anwenden, d.h. Zähler und Nenner unabhängig voneinander ableiten:$$\lim\limits_{x\to0}f(x)=\lim\limits_{x\to0}\frac{(x^6+1)^4-1}{x^4}=\lim\limits_{x\to0}\frac{4(x^6+1)^3\cdot6x^5}{4x^3}=\lim\limits_{x\to0}\left((x^6+1)^3\cdot6x^2\right)=0$$
Bei der nächsten Aufgabe zeigen wir, dass der linksseitige Grenzwert \(x\nearrow0\) ein anderer ist als der rechtsseitige Grenzwert \(x\searrow0\), sodass wir nicht den einen Grenzwert für \(x\to0\) angeben können:$$\lim\limits_{x\searrow0}\left(\frac{x}{|x|}\right)\stackrel{(x>0)}{=}\lim\limits_{x\searrow0}\left(\frac{x}{x}\right)=\lim\limits_{x\searrow0}(1)=1$$$$\lim\limits_{x\nearrow0}\left(\frac{x}{|x|}\right)\stackrel{(x<0)}{=}\lim\limits_{x\nearrow0}\left(\frac{x}{-x}\right)=\lim\limits_{x\nearrow0}(-1)=-1$$Da links- und rechtsseitiger Grenzwert für \(x\to0\) unterschiedlich sind, ist der Grenzwert \(x\to0\) nicht definiert.