Aloha :)
zu 1) Verwende die dritte binomische Formel und kürze dann:$$\lim\limits_{x\to2}\frac{x^2-4}{x-2}=\lim\limits_{x\to2}\frac{(x+2)\pink{(x-2)}}{\pink{(x-2)}}=\lim\limits_{x\to2}(x+2)=2+2=4$$
zu 2) Erweitere den Bruch so, dass du die dritte binomische Formel anwenden kannst:$$\small\lim\limits_{x\to\infty}\left(\sqrt{x^2+x}-x\right)=\lim\limits_{x\to\infty}\frac{(\sqrt{x^2+x}-x)\pink{(\sqrt{x^2+x}+x)}}{\pink{(\sqrt{x^2+x}+x)}}=\lim\limits_{x\to\infty}\frac{(\sqrt{x^2+x})^2-x^2}{\sqrt{x^2+x}+x}$$$$\qquad=\lim\limits_{x\to\infty}\frac{(x^2+x)-x^2}{\sqrt{x^2+x}+x}=\lim\limits_{x\to\infty}\frac{x}{\sqrt{x^2+x}+x}=\lim\limits_{x\to\infty}\frac{\pink{\frac1x}\cdot x}{\pink{\frac1x}\cdot\left(\sqrt{x^2+x}+x\right)}$$$$\qquad=\lim\limits_{x\to\infty}\frac{1}{\sqrt{\frac{x^2+x}{x^2}}+1}=\lim\limits_{x\to\infty}\frac{1}{\sqrt{1+\frac{1}{x}}+1}=\frac{1}{\sqrt{1+0}+1}=\frac12$$
zu 3) Wenn ich das richtig sehe, soll der Grenzwert gegen \((1^+)\) bestimmt werden. Das ist der Fall, wenn man sich dem Wert \(x=1\) vom Bereich \(x>1\) aus nähert. Also greift der untere Teil der Definition von \(f(x)\):$$\lim\limits_{x\to1^+}f(x)=\lim\limits_{x\to1^+}(x^2-1)=1^2-1=0$$Beachte, dass für den Grenzwert gegen \((1^-)\) der obere Teil der Definition gelten würde, so dass dieser Grenzwert \(1\) wäre. Da der links- und rechtsseitige Grenzwert für \(x\to1\) unterschiedlich sind, kann gibt es keinen Grenzwert \(x\to1\). Aber dieser ist ja auch nicht gefragt ;)