H-Methode
\(\huge\lim{\text{h} \to 0} \frac{\text{f}(\text{x}_0+\text{h})-\text{f}(\text{x}_0)}{\text{h}} \\\large x_0 = 2 \\\huge\lim{\text{h} \to 0}\,\, \frac{\text{f}(2+\text{h})\,-\,\text{f}(2)}{\text{h}} \\\large f(x) = 2x^2-3x \\\huge\lim{\text{h} \to 0}\,\, \frac{2(2+\text{h})^2-3(2+\text{h})\,-\,(2\cdot2^2-3\cdot2)}{\text{h}}\\\lim{\text{h} \to 0}\,\, \frac{2(4+4\text{h}+\text{h}^2)-\,(6+3\text{h})\,-\,(8-6)}{\text{h}}\\\lim{\text{h} \to 0}\,\, \frac{8+8\text{h}+2\text{h}^2-\,6-3\text{h}\,-\,2}{\text{h}}\\\lim{\text{h} \to 0}\,\, \frac{\bcancel{\,8\,}+5\text{h}+2\text{h}^2-\,\bcancel{\,8\,}}{\text{h}}\\\lim{\text{h} \to 0}\,\, \frac{5\text{h}+2\text{h}^2}{\text{h}} = \frac{\bcancel{\text{\,h\,}}(5+2\text{h})}{\bcancel{\text{\,h\,}}} \\\lim{\text{h} \to 0}\,\, 5+2\text{h} = 5 \)