Hallo, kann mir jemand bei dieser Aufgabe weiterhelfen?
Wir wollen zeigen, dass die Parabel y = x2 einen Brennpunkt bei F = (0, 1/4) hat. Das heißt, dass alle Lichtstrahlen, die von oben in −y-Richtung einfallen und an der Parabel reflektiert werden
gemäß “Einfallswinkel = Ausfallswinkel”, durch F laufen. Gehen Sie so vor:
(a) Geben Sie für jeden Punkt P = (x, x2) der Parabel einen Vektor t ≠ 0 in Richtung der
Tangente in P an und einen Vektor n ≠ 0 in Richtung der Normalen (Senkrechten).
(b) Berechnen Sie cos α für den Einfallswinkel α bei P sowie cos β für den Winkel β zwischen n und der Strecke P F .
(c) Zeigen Sie, dass α = β für alle P .